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                 A BSTRACT  
 Cannabinoids are antinociceptive in animal models of acute, 
tissue injury – , and nerve injury – induced nociception. This 
review examines the biology of endogenous cannabinoids 
(endocannabinoids) and behavioral, neurophysiological, and 
neuroanatomical evidence supporting the notion that canna-
binoids play a role in pain modulation. Behavioral pharma-
cological approaches, in conjunction with the identifi cation 
and quantifi cation of endocannabinoids through the use of 
liquid and gas chromatography mass spectrometry, have 
provided insight into the functional roles of en docannabinoids 
in pain modulation. Here we examine the distribution of 
 cannabinoid receptors and endocannabinoid-hydrolyzing 
enzymes within pain modulatory circuits to gether with 
behavioral, neurochemical, and neurophysiological studies 
that suggest a role for endocannabinoid  signaling in pain 
modulation. This review will provide a comprehensive eval-
uation of the roles of the endocannabinoids 2-arachidonoyl-
glycerol and anandamide in stress-induced analgesia. These 
fi ndings provide a functional framework with which to 
understand the roles of endocannabinoids in nociceptive 
processing at the supraspinal level.  

   K EYWORDS:     2-arachidonoylglycerol  ,   anandamide  ,   CB1  , 
  fatty acid amide hydrolase  ,   monoacylglycerol lipase  ,   peri -
aqueductal gray  ,   rostral ventromedial medulla    

   INTRODUCTION 
 The discovery, cloning, and characterization of cannabi-
noid receptors, 1-3  along with the isolation of endogenous 
ligands for these receptors, such as anandamide 4  and 
2- arachidonoylglycerol (2-AG), 5  ,  6  established the existence 
of an endocannabinoid neuromodulatory system. Cannabi-
noid receptors occur in high densities in the rodent brain 
(>1 pmol/mg protein). 2  The heterogeneous distribution of 
cannabinoid receptors in the central nervous system 2  ,  7  
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 suggests a neuroanatomical basis for the profound behav-
ioral effects induced by exogenous cannabinoids. The can-
nabinoid system is thus a major neurochemical system 
whose functional signifi cance has only recently been 
explored. Cannabinoid receptors are localized in neuroanat-
omical regions subserving transmission and modulation of 
pain signals, such as the periaqueductal gray (PAG), the ros-
tral ventromedial medulla (RVM), 2  ,  7  and the dorsal horn of 
the spinal cord. 7  These fi ndings suggest that endocannabi-
noids play a key role in central nervous system modulation 
of pain signaling. This review will focus on elucidating the 
pain modulatory functions of cannabinoids and endocan-
nabinoids mediated primarily at the supraspinal level.  

  CANNABINOID RECEPTOR SUBTYPES 
 Two subtypes of cannabinoid receptors — CB 1  and CB 2  —
 have been identifi ed. CB 1  is enriched in the brain. 3  ,  8  ,  9  By 
contrast, CB 2  is mainly expressed in immune tissues, in -
cluding the spleen, tonsils, monocytes, and B and T cells 10-12  
and is found only at low levels in neurons of the central ner-
vous system. 8  ,  9  ,  11  In pathological pain states, CB 2   messenger 
RNA (mRNA) is also detected in the lumbar dorsal horn 
concurrently with the appearance of activated microglia. 13  
CB 1  is negatively coupled to adenylate cyclase through Gi/o 
proteins. 14  ,  15  Activation of these receptors inhibits N- and 
P/Q-type calcium channels 16  ,  17  and activates inward re -
ctifying potassium 18  and potassium A 19  channels. CB 2  is 
also negatively coupled to adenylate cyclase but is not cou-
pled to calcium channels. 14  These signal transduction prop-
erties suggest that activation of CB 1  suppresses neuronal 
excitability and neurotransmitter release by modulating cal-
cium and potassium conductances. 
 This review will examine evidence suggesting that endo-
cannabinoids act at CB 1  receptors in the central nervous 
system to modulate pain processing. A more extensive 
review of the role of CB 1  receptor activation in modulating 
acute and sustained nociception at spinal and peripheral lev-
els is available elsewhere. 20  ,  21  A role for peripheral CB 1  and 
CB 2  receptors in modulating acute, 22  tissue injury – , 23-29  and 
nerve injury – induced 30  nociception has recently been dem-
onstrated following systemic and local hind paw injections 
of CB 2 -selective agonists. Interested readers are referred to 
recent reviews of peripheral cannabinoid antinociceptive 
mechanisms. 20  ,  31-34   
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  ENDOCANNABINOIDS 
 Several putative endocannabinoids have been isolated in 
the brain, including anandamide, 2-AG, noladin ether, 
virodhamine, and  N -arachidonoyldopamine (NADA). Other 
endogenous cannabinergic compounds include the related 
fatty acid derivatives oleamide, palmitoylethanolamide, and 
a novel family of arachidonoyl amino acids. These sub-
stances lack affi nity for cannabinoid receptors but appear to 
facilitate endocannabinoid function. The functional roles of 
these latter compounds remain poorly understood and are 
beyond the scope of this review. Because anandamide and 
2-AG are the best characterized of the endocannabinoids 
isolated thus far, this review will focus on understanding the 
role of these endocannabinoids in pain modulation. 
 Anandamide 4  and 2-AG 5  ,  6  ,  35  are thought to be pro-
duced upon demand (ie, by activity-dependent or receptor-
stimulated cleavage of membrane lipid precursors) and to 
be released from cells immediately after their production 
(for review, see Piomelli 36 ). Anandamide is synthesized in 
vitro in a 2-step process (     Figure 1 ; for review, see Piomelli 36 ). 
First, the phospholipid precursor  N -arachidonoyl-
 phosphatidylethanolamine (NAPE) is formed from phos-
phatidylethanolamine through a mechanism that is both 
Ca 2+  and cyclic AMP dependent, and catalyzed by the 
enzyme  N -acyltransferase. Second, NAPE is believed to be 
hydrolyzed by a NAPE-specifi c phospholipase D — an 
enzyme that remains molecularly uncharacterized — to gen-
erate anandamide and the metabolic intermediate phospha-
tidic acid. Anandamide shows preferential affi nity for CB 1  

(K i  [CB 1  vs CB 2 ] = 89 vs 371 nM) in vitro and acts as a low-
affi nity agonist at vanilloid TRPV1 receptors. 37-39  Systemic 
administration of exogenous anandamide produces antino-
ciception, suggesting that the endocannabinoid may also 
suppress pain under physiological conditions. This effect, 
however, is not reliably blocked by the selective CB 1  antag-
onist SR141716A (rimonabant), 40  ,  41  likely owing to the fact 
that anandamide is readily metabolized in vivo by fatty acid 
amide hydrolase (FAAH) into ethanolamine and arachi-
donic acid.   
 In vitro experiments suggest that 2-AG formation (for 
review, see Piomelli 36 ) occurs via successive activation of 2 
enzymes (     Figure 2 ). First, the 2-AG precursor 1,2-diacylg-
lycerol (DAG) is formed from phospholipase C – mediated 
hydrolysis of membrane phosphoinositides. Newly formed 
DAG may subsequently be hydrolyzed by DAG-lipase 
(DGL) to yield 2-AG. DAG can alternatively be phosphory-
lated by DAG kinase to yield phosphatidic acid. Therefore, 
DGL-mediated hydrolysis of DAG is likely the fi rst com-
mitted step in 2-AG biosynthesis (for review, see Pio-
melli 36 ). In brain slices and cultured cells, 2-AG formation 
may be stimulated by neural activity, 35  membrane depolar-
ization, 42  or pharmacological activation of G protein-
 coupled receptors such as group I metabotropic glutamate 
receptors. 43  2-AG is a naturally occurring 2-monoacylglyc-
erol that activates both CB 1  and CB 2  receptors. 5  ,  6  Although 
brain concentrations of 2-AG are 170-fold higher than those 
of anandamide, 35  the role of endogenous 2-AG in pain mod-
ulation is just beginning to be appreciated. 2-AG has been 
postulated to be the true natural ligand for cannabinoid 
receptors, with cannabinoid receptors serving primarily 
as 2-AG receptors. 44  ,  45  Exogenous 2-AG, administered 
systemically, suppresses noxious stimulus – induced respond-
ing in the tail-fl ick assay, 5  suggesting that endogenous 

 Figure 1.      Hypothetical model showing pathways of anandamide 
formation and deactivation. FAAH indicates fatty acid amide 
hydrolase; mGluR, metabotropic glutamate receptor; NAPE, 
N-arachidonoyl-phosphatidylethanolamine; NAT, N-
acyltransferase; NMDA,  N -methyl-D-aspartic acid; and PLD, 
phospholipase D.  

 Figure 2.    Hypothetical model showing pathways of 2-AG formation 
and deactivation. 2-AG indicates 2-arachidonoylglycerol; 
DAG, diacylglycerol; DGL, diacylglycerol lipase; GABA, ; 
MGL, monoacylglycerol lipase; mGluR, metabotropic 
glutamate receptor; PLC, phospholipase C, and PIPx, 
phospholipid precursors.  
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2-AG may suppress pain responding under physiological 
conditions. Behavioral responses to 2-AG are also enhanced 
by related, endogenous 2-acylglycerols, which fail to show 
signifi cant activity in any of the tests employed when admin-
istered alone. 46  This  “ entourage effect ”  is likely to help reg-
ulate the activity of endocannabinoids in the nervous 
system 46 : competing for the same enzyme for hydrolysis 
may potentiate endocannabinoid actions.    

  ENDOCANNABINOID DEGRADING ENZYMES 
 Three of the 5 putative endocannabinoids — anandamide, 
2-AG, and NADA — are susceptible to degradation by 
FAAH, 47-50  although a second enzyme, monoacylglycerol 
lipase (MGL), 51  catalyzes hydrolysis of 2-AG in vivo. 52  
Immunocytochemical methods have been employed to map 
the distribution of FAAH in the brain. 53-55  The anatomical 
correspondence of FAAH and CB 1  mRNA also supports the 
hypothesis that endocannabinoids act as retrograde messen-
gers. 54  Recent electrophysiological studies have provided 
confi rmation of this hypothesis. 56  ,  57  Signifi cantly, immuno-
cytochemical studies have demonstrated FAAH expression 
in the ventral posterior lateral nucleus of the thalamus, 53-55  
which is the termination zone of the spinothalamic tract. 
This pathway is the major source of ascending nociceptive 
information to the brain. Furthermore, FAAH has been iden-
tifi ed in Lissauer ’ s tract and in neurons of the superfi cial spi-
nal cord dorsal horn (ie, in close proximity to the  termination 
zone of nociceptive primary afferents). These observations 
confi rm that a mechanism for endocannabinoid deactivation 
is present in regions of the central nervous system implicated 
in nociceptive processing and further support the notion that 
endocannabinoids play a role in pain modulation. 
 Although FAAH reportedly metabolizes 2-AG in vitro, 58  
MGL is likely to play the predominant role in 2-AG 
de activation. 51  MGL is a serine hydrolase that converts 
monoglycerides to fatty acids and glycerol. Northern blot, 
immunocytochemical, and in situ hybridization studies 
reveal that MGL is heterogeneously distributed in the rat 
brain, with the highest levels observed in the cortex, the thal-
amus, the hippocampus, and the cerebellum. 51  Ultrastruc-
tural studies suggest that MGL is localized predominantly if 
not exclusively on axon terminals. 59  The recent development 
of pharmacological inhibitors of MGL such as URB602 has 
provided pharmacological tools for studying the functions of 
endogenous 2-AG in pain modulation, as described later in 
this review. 52  In vitro studies suggest that overexpression of 
MGL attenuates 2-AG accumulation in rat cortical neurons 
without altering anandamide accumulation. 51  Moreover, 
virally mediated RNA silencing of MGL is associated with 
marked enhancements of both basal and Ca 2+ -stimulated 
2-AG levels in HeLa cells. 60  Activation of mGlu5 receptors 
stimulates the formation of 2-AG (but not anandamide) in 

cultured cells derived from rat corticostriatal and hippocam-
pal slices. 43  This formation of 2-AG is calcium-dependent 
and catalyzed by phospholipase C and 1,2-diacylglycerol 
lipase. 43  Also, the metabotropic glutamate 5 (mGlu5) recep-
tor antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) 
prevents 2-AG formation induced by the group I mGlu 
receptor agonist 3,5-dihydroxyphenylglycine (DHPG). 43  
More work, however, is necessary to determine whether the 
same processes control 2-AG formation in vivo. 
 The antinociceptive effects of exogenous 2-AG are pre-
served in FAAH( − / − ) mice, 61  suggesting that FAAH does 
not catalyze 2-AG deactivation in vivo. Unlike anandamide 
and oleamide, monoacylglycerol lipids such as 2-AG exhib-
ited equivalent hydrolytic activity in FAAH(+/+) and ( − / − ) 
mice. 61  These observations formed the basis for the conclu-
sion that FAAH is an important regulator but not mediator 
of fatty acid amide activity in vivo. 61  
 Transgenic approaches involving FAAH and CB 1  knock-
outs have recently been used in conjunction with pharmaco-
logical approaches to better evaluate the role of 
endocannabinoids in pain modulation. Mutant mice lacking 
the CB 1  gene fail to show typical antinociceptive responses 
to prototypical cannabinoid agonists. 9  ,  62  It should be 
acknowledged, however, that high doses of Δ 9 -tetrahydro-
cannabinol do exhibit a CB 1 -independent antinociception, 9  
although the receptor mechanism underlying this effect has 
not been evaluated. Cravatt et al developed mice lacking the 
FAAH gene and observed that these animals exhibited 
enhanced antinociceptive behavior following exogenous 
administration of anandamide. 63  Importantly, these enhance-
ments of antinociception were blocked by the selective CB 1  
antagonist rimonabant, providing compelling evidence 
that a CB 1 -dependent process is responsible for FAAH-
mediated anandamide hydrolysis. Furthermore, Cravatt et al 63  
observed tonic centrally mediated CB 1 -dependent analgesia 
in FAAH( − / − ) mice, an effect likely due to the absence of 
this key enzyme, which catalyzes hydrolysis of fatty acid 
amides such as anandamide. 63  ,  64  The behavioral phenotype 
was associated with a 15-fold increase in endogenous brain 
levels of anandamide in the FAAH( − / − ) mice relative to 
FAAH(+/+) mice. 63  When mice lacking FAAH were treated 
with exogenous anandamide, they exhibited profound CB 1 -
dependent behavioral responses, including hypomotility, 
analgesia, catalepsy, and hypothermia. The generation of 
mutant mice that are incapable of synthesizing or inactivat-
ing 2-AG should further elucidate roles of this endocannabi-
noid in pain modulation.  

  CANNABINOID RECEPTOR PHARMACOLOGY AND 
EXOGENOUS CANNABINOID LIGANDS 
 The development of competitive antagonists 65  and selective 
agonists for CB 1  has provided important pharmacological 
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tools for investigating the biological functions of cannabi-
noids in the nervous system. SR141716A (rimonabant) 
shows high affi nity for cannabinoid receptors in the brain 
(K d  = 0.23 nM) 65  but displays negligible affi nity for CB 2  (K i  
[CB 1  vs CB 2 ] = 5.6 nM vs >1 μM). 66  At high concentra-
tions, rimonabant has been shown to inhibit vanilloid 
TRPV1 (formerly VR1) receptors. AM251 is a selective, 
competitive CB 1  antagonist (K i  [CB 1  vs CB 2 ] = 7.5 nM vs 
>2 μM) 67  devoid of vanilloid activity. Potent cannabinoid 
agonists CP55940 (K i  = 0.6 nM at CB 1  and CB 2 ), HU210 
(K i  [CB 1  vs CB 2 ] = 0.73 vs 0.22 nM), and WIN55212-2 (K i  
[CB 1  vs CB 2 ] = 1.9 vs 0.3 nM) show high affi nity for CB 1  
and CB 2  and show marked improvements in potency 
compared with  D  9 -tetrahydrocannabinol ( D  9 -THC), the pro-
totypic classical cannabinoid. Selective competitive antago-
nists and high-affi nity agonists have been used both to 
characterize the roles of cannabinoids in pain signaling 
and to map the sites of endocannabinoid action within the 
nervous system. 

 Studies relying upon the delivery of exogenous compounds 
that directly activate or block cannabinoid receptors have 
been indispensable for the initial assessment of the func-
tional role of cannabinoid receptor activation in pain modu-
lation. However, these studies do not provide direct evidence 
that endocannabinoids mediate these same functions under 
physiological conditions. More recently, the development 
of drugs that inhibit the enzymatic degradation of endocan-
nabinoids (ie, through inhibition of FAAH or MGL) has 
facilitated research examining the functional consequences 
of activation of the body ’ s endogenous system. URB597 68  
is a well-characterized irreversible inhibitor of FAAH (IC 50  = 
4.6 nM) that lacks signifi cant affi nity for CB 1  and CB 2  
receptors and does not affect MGL, acetyl-cholinesterase, 
butyryl-cholinesterase, or the anandamide membrane trans-
porter at concentrations up to 300 μM. Arachidonoylsero-
tonin 69  is a novel FAAH inhibitor that inhibits anandamide 
hydrolysis (IC 50  = 5.6 μM), lacks affi nity for CB 1 , and does 
not signifi cantly affect the cellular uptake of anandamide at 
25 μM. MGL can be inhibited by a variety of nonselective 
serine hydrolase inhibitors (eg, methyl arachidonoyl fl uoro-
phosphonate). More recently, 2 selective inhibitors of MGL, 
URB602 52  and URB754, 70  have been described. URB602 
inhibits rat brain MGL (IC 50  = 28  ±  4 μM) through a non-
competitive mechanism, does not affect FAAH activity or 
anandamide levels, does not affect the activity of lipid-
metabolizing enzymes such as diacylglycerol lipase 35  and 
cyclooxygenase-2, 71  and does not infl uence the binding of 
[ 3 H]-WIN55212-2 to CB 1  or CB 2  receptors (IC 50   ≥  5  m M) 
or [ 35 S]-GTP- g -S to rat cerebellar membranes. 52  The effects 
of URB754 on pain modulation have not been examined. 

 Cellular uptake of anandamide reportedly involves facili-
tated diffusion, 72  although a specifi c transporter has yet to be 
cloned. Kinetics studies suggest the presence of an anan-

damide membrane transporter, 72  and pharmacological stud-
ies using inhibitors of anandamide transport 52  ,  72  have 
supported the notion that anandamide transport inhibition 
has a role in modulating endocannabinoid tone. Among the 
most commonly employed drugs of this class are AM404, 
which also inhibits FAAH activity, 73  and VDM11. While 
AM404 74  activates TRPV1 receptors at low concentrations, 
VDM11 75  does not. VDM11 inhibits the cellular uptake of 
anandamide (IC 50  = 1-11 μM), does not affect FAAH, and 
does not bind cannabinoid receptors at biologically relevant 
concentrations. Recently, a potent new competitive inhibitor 
of anandamide uptake, LY2318912, 72  was used to radiolabel 
the anandamide transporter binding site in rat cerebellum. 
Systemic administration of LY2318912 also induced a 5-
fold elevation in brain anandamide levels. Moreover, 
LY2318912 diminished nociceptive behavior in the formalin 
test, with no concomitant expression of gross motor defi cits 
typical of administration of direct cannabinoid agonists. 72   

  ANTINOCICEPTIVE EFFECTS OF EXOGENOUS 
CANNABINOIDS 
 Preclinical behavioral studies using different types of nox-
ious stimulation (ie, thermal, mechanical, and chemical; for 
review, see Walker and Hohmann 21 ) have demonstrated that 
cannabinoids effectively induce antinociception. In 1899, 
Dixon 76  demonstrated that delivery of cannabis smoke to 
dogs produced a failure to respond to pin pricks. Seminal 
studies on cannabinoid-induced antinociception by Bicher 
and Mechoulam 77  and Kosersky et al 78  provided a founda-
tion for subsequent work that verifi ed the ability of cannabi-
noids to profoundly suppress behavioral reactions to acute 
noxious stimuli and infl ammatory and nerve injury – induced 
pain. The potency and effi cacy of cannabinoids in produc-
ing antinociception is comparable to that of morphine. 79  ,  80  
However, cannabinoids induce profound motor defi cits, 
including immobility and catalepsy, 81  which are a confound 
for behavioral studies that assess motor responses to nox-
ious stimuli. Many recent studies of cannabinoid antinoci-
ception compensate for this limitation by additionally 
assessing behavioral measures of immobility and catalepsy 
to provide intrinsic controls for cannabinoid-induced 
changes in motor responding. Nonetheless, behavioral stud-
ies alone are not suffi cient to demonstrate that cannabinoids 
suppress the processing of nociceptive information. An 
extensive literature now demonstrates that cannabinoids 
suppress nociceptive transmission, thus providing a com-
pelling argument for the existence of endocannabinoid 
mechanisms of pain modulation. 
 Studies employing the systemic administration of cannabi-
noids have been useful in characterizing the antinociceptive 
effects of cannabinoids in animal models of acute and per-
sistent nociception. The antinociceptive effects elicited by 
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natural, synthetic, and exogenously administered endocan-
nabinoids, along with the blockade of these effects by phar-
macological and genetic disruptions of CB 1  activity, strongly 
suggest that cannabinoids have a specifi c physiological 
role in modulating pain sensitivity. Limitations of these 
approaches include the inability to localize the sites of 
action of cannabinoids and the failure to identify which 
endocannabinoids are involved in pain modulation. To 
address the fi rst limitation, several important studies have 
used site-specifi c microinjections of cannabinoids into brain 
regions implicated in the processing and regulation of noci-
ceptive signals. The second limitation has been addressed 
directly by identifying and quantifying endogenous media-
tors by microdialysis and liquid and/or gas chromatography 
mass spectrometry and indirectly by site-specifi c adminis-
tration of pharmacological agents that regulate endocan-
nabinoid uptake or degradation.  

  CANNABINOID-INDUCED SUPPRESSION OF 
NOCICEPTIVE TRANSMISSION 
 Electrophysiological and neurochemical studies provide 
convincing evidence that cannabinoids suppress noci ceptive 
transmission in vivo. 82-90  Walker ’ s laboratory fi rst demon-
strated that cannabinoids suppress noxious stimulus – evoked 
neuronal activity in nociceptive neurons in the spinal cord 
and thalamus. 84  ,  85  ,  88  ,  91  ,  92  This suppression is observed in 
nociceptive neurons, generalizes to different modalities of 
noxious stimulation (mechanical, thermal, chemical), is 
mediated by cannabinoid receptors, and correlates with 
the antinociceptive effects of cannabinoids. 84-86  ,  88  ,  91  Canna-
binoids also suppress C-fi ber-evoked responses in spinal 
dorsal horn neurons recorded in normal, infl amed, and 
nerve-injured rats. 82  ,  87  ,  90  ,  93  In addition, cannabinoids sup-
press spinal Fos protein expression, a neurochemical marker 
of sustained neuronal activation, 94  in a variety of animal 
models of persistent pain 28  ,  91  ,  92  ,  95-98  through CB 1 - and CB 2 -
selective mechanisms. Most electrophysiological studies 
have focused on wide-dynamic-range and nociceptive-
 specifi c cells recorded at the level of the spinal dorsal horn 
and have provided convincing evidence that cannabinoids 
suppress the transmission of nociceptive information. In 
vivo electrophysiological studies of brainstem neurons 
implicated in the descending control of pain have also pro-
vided insight into the role of cannabinoids in pain modula-
tion and will be discussed below. 89  ,  99   

  CANNABINOID ANTINOCICEPTIVE EFFICACY IN 
TISSUE INJURY MODELS OF PERSISTENT PAIN 
 Studies using systemic administration of cannabinoids have 
demonstrated antinociception in multiple models of infl am-
matory nociception. Kosersky et al 78  showed that systemic 

 D  9 -THC increases the threshold for paw pressure – induced 
vocalization following the induction of infl ammation in the 
hind paw. Tsou et al 92  used the formalin test to show that 
systemic cannabinoids suppress noxious stimulus – evoked 
Fos protein expression and pain-related behaviors. The for-
malin test assesses supraspinally organized pain behavior. 
Our laboratory demonstrated that neurotoxic destruction of 
descending noradrenergic projections to the spinal cord 
reduces the suppression of formalin-evoked Fos protein 
expression induced by WIN55212-2. 100  The contribution of 
peripheral and spinal sites of action to cannabinoid antino-
ciception in tissue and nerve injury models of persistent 
pain is now well documented (for review, see Hohmann 20 ). 
By contrast, the contribution of supraspinal sites to cannabi-
noid analgesic action in models of persistent pain has 
received less attention.  

  CANNABINOID ANTINOCICEPTIVE EFFICACY IN 
NERVE INJURY MODELS OF PERSISTENT PAIN 
 Antihyperalgesic and antiallodynic effi cacy of cannabinoids 
has been demonstrated in several rodent models of experi-
mental neuropathy. Bennett ’ s group demonstrated antihy-
peralgesic and antiallodynic effi cacy of a cannabinoid 
following a chronic constriction injury of the sciatic nerve. 101  
The changes were blocked by systemic administration of a 
CB 1  antagonist. 101  Hyperalgesia and allodynia induced by 
tight ligation of the L5 spinal nerve is also attenuated by 
systemic administration of WIN55212-2; these effects were re -
versed by a CB 1  but not by a CB 2  antagonist. 102  Cannabinoid-
induced antinociception remains effective in nerve-injured 
rats following repeated administration, suggesting that can-
nabinoids are superior to opioids in alleviating neuropathic 
pain. 103  The existence of a substantial population of spinal 
cannabinoid receptors that remain intact following rhizot-
omy 86  ,  104  may have clinical relevance, especially for deaf-
ferentation pain that is refractory to treatment with 
conventional narcotic analgesics. 105  The experimental stud-
ies thereby support the idea that the cannabinoids have a 
novel therapeutic target in treating neuropathic pain. 
 One possible mechanism for the antihyperalgesic actions 
of cannabinoids in neuropathic pain is suggested by 
cannabinoid-induced suppression of windup and noxious 
stimulus – induced central sensitization. 90  ,  106  Support for the 
idea that there are both central and peripheral sites of can-
nabinoid antihyperalgesic effi cacy has recently been dem-
onstrated in a rat model of neuropathy using intrathecal and 
intraplantar administration of cannabinoid agonists and 
antagonists. 107  Electrophysiological studies also provide evi -
dence for plasticity of the spinal cannabinoid system following 
tight ligation of the L5/L6 spinal nerve. Plasticity of canna-
binoid systems may contribute to cannabinoid therapeutic 
effi cacy in neuropathic pain states. 106  However, less is known 
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about the possible contribution of supraspinal sites of canna-
binoid analgesic action to the control of neuropathic pain. 
 The nucleus reticularis gigantocellularis pars alpha is impli-
cated in cannabinoid modulation of neuropathic pain. 108  In 
rats subjected to partial sciatic nerve ligation (Seltzer 
model), unilateral hind paw injections of formalin contralat-
eral to the site of nerve damage showed a reduced behav-
ioral response to formalin compared with control conditions 
in the absence of nerve injury. 108  Administration of 
rimonabant to the nucleus reticularis gigantocellularis pars 
alpha of nerve-injured rats increased behavioral responses 
to formalin. 108  Although these data are consistent with the 
hypothesis that nerve injury activates CB 1 -mediated endog-
enous antinociceptive mechanisms from the nucleus reticu-
laris gigantocellularis pars alpha in the formalin test, inverse 
agonist effects 109  can complicate interpretation of studies 
employing rimonabant to evaluate endogenous cannabinoid 
tone. 90  ,  110  Further work is necessary to determine whether 
endocannabinoids mediate the observed effects and to iden-
tify a physiological role for a specifi c endocannabinoid in 
this effect.  

  SUPRASPINAL SITES IMPLICATED IN 
CANNABINOID MODULATION OF PAIN 
 Direct support for the notion that there are supraspinal sites 
of cannabinoid antinociception was initially revealed in 
studies assessing acute withdrawal responses to thermal 
stimulation. The antinociceptive 111  effects of Δ 9 -THC in the 
tail-fl ick test are attenuated following spinal transection, 
providing indirect evidence that supraspinal sites play an 
important role in cannabinoid antinociceptive action. Elec-
trophysiological studies 86  similarly suggest that the sup-
pressive effects of systemically administered cannabinoids 
on noxious stimulus – evoked responses in spinal nocicep-
tive neurons are attenuated following spinal transection. 
Direct evidence for supraspinal sites of cannabinoid analge-
sic action was derived from the observation that intraven-
tricular administration of cannabinoids WIN55212-2, 
CP55940, and  D  9 -THC induces antinociception. 112  ,  113  Con-
sistent with these behavioral studies, intraventricular 
ad ministration of WIN55212-2 also suppresses noxious 
stimulus – evoked responding in wide-dynamic-range 
neurons recorded in the spinal dorsal horn. 86  Using 
au toradiographic methods, a study employing intraventric-
ular administration of [ 3 H]WIN55212-2 confi rmed that 
the radiolabeled drug was confi ned to periventricular 
sites throughout the brain. These studies underscore the 
importance of periventricular structures in contributing to 
cannabinoid-mediated pain modulation. 
 Site-specifi c injections of cannabinoid agonists to various 
brainstem regions have been used to identify supraspinal 
sites of cannabinoid antinociception. Using the tail-fl ick 

test, additional studies demonstrated that microinjection of 
cannabinoids into sites such as the dorsolateral PAG, dorsal 
raphe nucleus, RVM, amygdala, lateral posterior and sub-
medius regions of the thalamus, superior colliculus, and 
noradrenergic A5 region produces antinociception. 114-116  
Lichtman et al demonstrated that administration of CP55940 
in the vicinity of the posterior ventrolateral PAG/dorsal 
raphe also produced antinociception, catalepsy, and hypo-
thermia that was selective for the active stereoisomer. 113  By 
contrast, administration of CP55940 to the caudate putamen 
produced catalepsy but failed to induce antinociception or 
hypothermia. Microinjection of the cannabinoid HU210 
into the dorsal PAG also produces a CB 1 -mediated suppres-
sion of formalin-evoked nocifensive behavior and attenu-
ates formalin-evoked Fos protein in the caudal lateral 
PAG. 98  The intra-PAG injection of the cannabinoid also 
attenuated aversive defense behavior (ie, locomotor activa-
tion) elicited by dorsal PAG injections of the excitatory 
amino acid D,L-homocysteic acid. 98  Exogenous cannabi-
noids also modulate ultrasound-induced aversive responses 
in rats through actions in the dorsal PAG, although these 
effects were insensitive to blockade by rimonabant. 117  These 
studies provide support for the hypothesis that endocannabi-
noids may modulate pain and defense behaviors through 
actions in the PAG. 
 While the studies described above identify sites where 
exogenously administered synthetic cannabinoids induce 
antinociception, they do not elucidate which endocannabi-
noids play a role in pain modulation. Investigators com-
monly hypothesize the role of a particular endocannabinoid 
from data showing that the compound induces antinocicep-
tion. This method assumes that appropriate stimulation con-
ditions result in the in vivo release of the endocannabinoid 
and that the compound ’ s net effect is suffi cient to suppress 
pain sensitivity. In other studies, investigators correlate 
endocannabinoid levels or release, and the observation of 
antinociception. This method is informative but incapable 
of establishing causation. With these limitations in mind, 
the following sections review what is known about the role 
of particular endocannabinoids in nociceptive responding.  

  PAG 
 The PAG is a common neural substrate underlying both 
analgesia and aversive responses. Electrical stimulation of 
the PAG produces analgesia and defensive behavior 118  ,  119  
that depends upon the activation of specifi c subdivisions of 
the nucleus. Electrical stimulation of the ventrolateral PAG 
produces analgesia that is blocked by opioid antagonists 
such as naltrexone, 118  suggesting that there is mediation by 
endogenous opioid peptides. By contrast, electrical stimula-
tion of the dorsal and lateral PAG produces analgesia that is 
insensitive to blockade by opioid antagonists, 118  mediated 
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by endocannabinoids, and blocked by cannabinoid antago-
nists. 120  Walker ’ s group showed that electrical stimulation of 
the dorsal and lateral PAG resulted in cannabinoid receptor-
mediated stimulation-produced analgesia concurrent with 
the mobilization of anandamide. 120  These actions were 
blocked by systemic or intra-PAG microinjection of 
rimonabant, consistent with mediation by CB 1 . We recently 
demonstrated that 2-AG and anandamide are elevated in 
dorsal midbrain fragments containing the entire PAG con-
comitantly with the expression of nonopioid stress-induced 
analgesia (SIA). We showed that exposure to a 3-minute 
continuous foot shock induced a CB 1 -mediated SIA inde-
pendent of endogenous opioids. 52  Moreover, microinjection 
of FAAH inhibitors such as URB597 52  and arachidonoylse-
rotonin 121  also enhanced SIA in a CB 1 -dependent manner. 
Microinjection of the MGL inhibitor URB602 into the PAG 
also induced a CB 1 -mediated enhancement of stress antino-
ciception and selectively elevated levels of 2-AG (but not 
anandamide) in this region. 52  These data identify a physio-
logical role for endogenous 2-AG in pain modulation at the 
level of the midbrain PAG. 
 Not all effects of endocannabinoids are mediated by CB 1  
receptors, and therefore, it is important to demonstrate that 
endocannabinoid actions are blocked by selective cannabi-
noid antagonists. Microinjection of the FAAH inhibitor 
URB597 into the ventrolateral PAG has been reported to 
elevate endocannabinoids (both anandamide and 2-AG) 
and induce biphasic effects on thermal nociception via 
ac tivation of CB 1  and TRPV1 receptor mechanisms. 99  In 
this study, the TRPV1-mediated antinociception and CB 1 -
 mediated nociception caused by URB597 correlated with 
enhanced or reduced activity of RVM off-cells, suggesting 
that these effects occur via stimulation or inhibition of excit-
atory PAG output neurons, respectively. 99  At the highest 
dose tested, however, URB597 (4 nmol/rat) and WIN55212-
2 (25-100 nmol) caused only CB 1 -mediated analgesia, cor-
relating with stimulation (possibly disinhibition) of RVM 
off-cells. 99  Thus, anandamide but not 2-AG may affect the 
descending pathways of pain control by acting at either CB 1  
or TRPV1 receptors in select PAG subregions. 99  
 In vitro electrophysiological studies indicate that canna-
binoids inhibit both gamma-aminobutyric acid-ergic 
(GABAergic) and glutamatergic synaptic transmission pre-
synaptically in rat PAG through a CB 1 -specifi c mecha-
nism. 122  The cellular actions of cannabinoids are distinct 
from those of mu opioids because cannabinoids lack direct 
postsynaptic action on PAG neurons. Exogenous cannabi-
noids are likely to reduce the probability of transmitter 
release from presynaptic terminals via a Ca 2+ -independent 
mechanism, 122  suggesting that endocannabinoids behave 
similarly under physiological conditions. 
 Metabotropic glutamate and  N -methyl-D-aspartic acid 
(NMDA) receptors are required for cannabinoid antinoci-

ception at the level of the PAG. 123  Infusion of WIN55212-2 
into the PAG produced dose-dependent increases in paw 
withdrawal latencies in the plantar test. 123  This antinocicep-
tive effect was blocked by pretreatment with rimonabant, 
which at high doses also produced modest hyperalgesia. 
Blockade of mGlu5 metabotropic glutamate receptors but 
not mGlu1 receptors completely blocked the effects of 
WIN55212-2. Both mGlu5 and mGlu1 receptors belong to 
the group I class of metabotropic glutamate receptors, which 
are G-protein-coupled and positively coupled to phospholi-
pase C. Pretreatment with antagonists for group II (which 
includes mGlu2 and mGlu3) and group III (which includes 
mGlu4, mGlu6, mGlu7, and mGlu8) metabotropic gluta-
mate receptors, which are negatively coupled to adenylate 
cyclase and preferentially localized to presynaptic active 
zones associated with autoreceptors, also suppressed 
WIN55212-2-induced antinociception. In addition to these 
metabotropic glutamate receptors, a selective antagonist for 
ionotropic glutamate (NMDA) receptors also blocked the 
antinociceptive effects of WIN55212-2. More work is nec-
essary to elucidate the role of metabotropic glutamate recep-
tors in endocannabinoid mechanisms of pain suppression.  

  RVM 
 Researchers have targeted synthetic cannabinoids at other 
brainstem nuclei such as the RVM 108  ,  116  ,  124  and the nucleus 
reticularis gigantocellularis 108  to better characterize sites of 
cannabinoid-mediated antinociception. Walker ’ s group 
demonstrated that site-specifi c administration of cannabi-
noids (WIN55212-2 and HU210) in the RVM produced 
antinociception in the tail-fl ick test. 116  Mediation by CB 1  
receptors was evident because the antinociceptive effects 
of HU210 were blocked by rimonabant and the receptor-
 inactive enantiomer WIN55212-3 failed to induce antinoci-
ception following microinjection to the same site. 116  
 Electrophysiological studies have provided functional 
insight into the mechanism mediating these antinociceptive 
effects. In vivo recordings provide direct evidence that can-
nabinoids modulate on- and off-cells in the RVM, 89  ,  125  
thereby demonstrating the ability of these ligands to control 
descending pain modulatory signaling via a process similar 
to that of morphine. In lightly anesthetized rats, on-cells 
exhibit a burst of activity before the tail-fl ick nociceptive 
refl ex, enhancing nociceptive transmission, whereas off-
cells show a suppression of fi ring before the tail-fl ick refl ex, 
inhibiting nociceptive transmission. Cannabinoids increased 
ongoing off-cell activity and reduced both the off-cell pause 
as well as the on-cell burst that occurs just prior to the tail-
fl ick refl ex. These actions were mediated by a CB 1  mecha-
nism that is not dependent upon endogenous opioids. 89  
Pharmacological inactivation of the RVM with site-specifi c 
administration of the GABA A  receptor agonist muscimol 
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also blocked the antinociceptive effects but not the motor 
defi cits of systemically administered WIN55212-2. 89  This 
work identifi es a GABAergic link in cannabinoid antinoci-
ceptive mechanisms. At the cellular level, cannabinoids 
exert their physiological effects in the RVM by presynaptic 
inhibition of GABAergic neurotransmission. 124  Collec-
tively, these results suggest that nociceptive responsiveness 
is modulated in the RVM by endocannabinoids, although 
the specifi c endocannabinoids mediating these actions 
remain to be identifi ed. 
 The nucleus reticularis gigantocellularis pars alpha within 
the RVM represents a major source of descending control 
induced by cannabinoids and is also directly activated by 
noxious stimulation. Microinjection of WIN55212-2 to the 
nucleus gigantocellularis pars alpha produced antinocicep-
tion in the tail fl ick and formalin tests in otherwise untreated 
rats. 108  These effects were blocked by a CB 1  antagonist. 
Microdialysis studies coupled with high-performance liquid 
chromatography mass spectrometry, together with site-
 specifi c administration of inhibitors of endocannabinoid 
degradation and synthesis, would be particularly useful in 
identifying which endocannabinoids mediate these effects.  

  ROLE OF THE AMYGDALA 
 The amygdala consists of a nuclear complex located in the 
limbic forebrain and plays a key role in the coordination of 
fear and defensive reactions. The amygdala is optimally 
positioned anatomically to receive and integrate sensory 
information from multiple modalities and, in turn, to medi-
ate emotional, autonomic, and somatic motor reactions to 
salient stimuli (especially threatening stimuli). 126  Within 
the amygdala, CB 1  immunoreactivity has been detected in a 
subset of GABAergic interneurons in the basolateral com-
plex, 127  a site implicated in the formation and storage of 
aversive memories. 128  Anandamide and 2-AG are elevated 
in the basolateral amygdala in a conditioned fear aversion 
paradigm, 127  supporting the hypothesis that endocannabi-
noids serve naturally to inhibit extinction of aversive mem-
ories. Endocannabinoids and CB 1  receptors in the basolateral 
nucleus of the amygdala are implicated in the long-term 
depression of GABAergic inhibitory currents, suggesting 
that endocannabinoids regulate aversive memory extinction 
via selective inhibition of local inhibitory networks in the 
amygdala. 127  
 The amygdala also plays a critical role in modulating anti-
nociception. Microinjection of cannabinoids into the baso-
lateral nucleus of the amygdala produces antinociception in 
the tail-fl ick test. 96  Microinjection of  m  opioid agonists into 
the basolateral nucleus of the amygdala similarly results in 
marked antinociceptive responding in the radiant heat tail-
fl ick 129  ,  130  and formalin tests. 131  Moreover, bilateral lesions 
of the amygdala rendered nonhuman primates less sensitive 

to the antinociceptive effects of the potent synthetic canna-
binoid WIN55212-2. 132  In rodents, microinjection of the 
GABA A  agonist muscimol into the central nucleus of the 
amygdala, but not into the basolateral nucleus of the amyg-
dala, reduced the antinociceptive effects of systemic 
WIN55212-2. 133  Moreover, FAAH and MGL are localized 
to postsynaptic and presynaptic sites, respectively, in the 
basolateral and lateral amygdala. 53  ,  55  ,  59  These data indicate 
that mechanisms exist for deactivation of anandamide and 
2-AG in the basolateral amygdala. Both conditioned 134  ,  135  
and unconditioned 136  SIA depend on intact functioning of 
the amygdala. These observations, together with the dem-
onstration of cannabinoid-mediated antinociceptive effects 
following site-specifi c administration to the basolateral 
nucleus of the amygdala, 114  suggest that endocannabinoids 
may serve naturally to suppress environmentally induced 
pain by actions in the amygdala. Below, we provide evi-
dence that endocannabinoids may specifi cally mediate anti-
nociceptive effects induced by exposure to environmental 
stressors, through actions in the PAG and to a lesser extent 
in the RVM and spinal cord.  

  BEHAVIORAL EVIDENCE FOR A ROLE OF 
ENDOCANNABINOIDS IN SIA 
 Stress activates neural systems that suppress pain sensation. 
This adaptive response is known as SIA and depends on the 
recruitment of brain pathways that project from the amyg-
dala to the midbrain PAG and descend to the brainstem 
RVM and dorsal horn of the spinal cord (for review, see 
Walker and Hohmann 21 ). For years, it has been recognized 
that endogenous opioid peptides participate in this pro-
cess, 137  ,  138  but the inability of opioid antagonists to block 
stress antinociception elicited by distinct stressor parame-
ters made it clear that other unidentifi ed mechanisms were 
also involved. 
 We hypothesized that endocannabinoids might mediate 
nonopioid SIA induced by brief, continuous foot shock. 52  
First, agonists of CB 1  receptors — the predominant cannabi-
noid receptor subtype present in the brain 2  ,  7  — exert pro-
found antinociceptive effects 21  and suppress activity in 
nociceptive neurons. 84  ,  86  ,  88  ,  89  Second, CB 1  antagonists 
increase the activity of nociceptive RVM neurons 89  and 
enhance sensitivity to noxious stimuli, 23  which suggests 
that an intrinsic endocannabinoid tone regulates descending 
antinociceptive pathways. 21  
 We quantifi ed the poststress sensitivity to pain in rats using 
the tail-fl ick test after exposure to a 3-minute foot shock 
stressor. 52  As demonstrated previously, 138  ,  139  this stimula-
tion protocol caused a profound antinociceptive effect that 
was not altered by systemic injection of the opiate antago-
nist naltrexone but was virtually eliminated by systemic 
administration of the competitive CB 1  receptor antagonists/
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inverse agonists rimonabant and AM251. Moreover, in rats 
rendered tolerant to the antinociceptive effects of cannabi-
noids (by daily treatment with WIN55212-2 for 14 days) a 
marked attenuation in stress antinociception was observed. 52  
It was unlikely that this change was due to altered opioid 
tone, because cannabinoid-tolerant rats showed no changes 
in antinociceptive responsiveness to morphine and rats tol-
erant to morphine showed no attenuation of nonopioid stress 
antinociception. 52  
 Pharmacological blockade of TRPV1 via systemic adminis-
tration of capsazepine also failed to alter stress analgesia in 
our testing paradigm, 121  suggesting that endocannabinoid-
mediated stress analgesia was not dependent on TRPV1. 
The same dose of capsazepine that failed to affect endocan-
nabinoid-mediated stress antinociception, however, reliably 
reduced capsaicin-induced antinociception in the tail-fl ick 
test. 121  
 We reasoned that if endocannabinoid activation of CB 1  
receptors mediates nonopioid SIA, then inhibition of endo-
cannabinoid deactivation should enhance stress antinoci-
ception. To test this hypothesis, we administered FAAH 
inhibitors (URB597, arachidonoyl serotonin, or palmitoyl 
trifl uoromethyl ketone) to rats and examined the resultant 
stress-induced antinociception in the tail-fl ick assay. 52  ,  121  
Regardless of the pharmacological method used to inhibit 
FAAH, postshock SIA was enhanced in animals treated 
systemically with FAAH inhibitors. In all cases, these 
effects were blocked by rimonabant, consistent with a CB 1 -
 dependent mechanism of action. 52  ,  121  Systemic admin-
istration of rimonabant also attenuates fear-conditioned 
antinociceptive responses in the formalin test, together with 
freezing be havior and defecation, suggesting that CB 1  
receptors and endocannabinoids may also contribute to fear-
conditioned analgesia. 140   

  SITES OF ACTION OF ENDOCANNABINOID-
MEDIATED SIA 
 To further investigate the sites of action of endocannabi-
noids in mediating stress antinociception, we microinjected 
rimonabant at multiple levels of the neuraxis and quantifi ed 
poststress sensitivity to pain in rats using the tail-fl ick test. 
We targeted brain structures involved in pain and stress 
responsiveness that contain CB 1  receptors and are impli-
cated in cannabinoid antinociception, including the dorso-
lateral PAG, ventral PAG, RVM, basolateral nucleus of the 
amygdala, central nucleus of the amygdala, and lumbar spi-
nal cord. 52  ,  121  ,  141  Rimonabant microinjection into the dorso-
lateral PAG produced the greatest suppression of SIA 
relative to all other sites surveyed (     Figure 3  and data not 
shown). These fi ndings are consistent with the presence of 
CB 1  receptors in the PAG and suggest that this structure 
plays a pivotal role in nonopioid SIA.    

  STRESS MOBILIZES ENDOCANNABINOIDS TO 
SUPPRESS PAIN 
 To determine whether endocannabinoid release is involved 
in SIA, we measured anandamide and 2-AG levels in dor-
sal midbrain fragments (containing the intact PAG) of 
rats killed without exposure to or at various times after 
foot shock. 52  Liquid chromatography/mass spectrometry 
(LC/MS) analyses revealed that midbrain 2-AG levels 
were markedly increased 2 minutes after shock and 
returned to baseline  ≈ 15 minutes later. This response pre-
ceded a sustained increase in anandamide levels, which 
peaked 7 to 15 minutes following the shock. No such 
changes were observed in the occipital cortex, a brain 
region that contains CB 1  receptors but is not considered 
part of the SIA circuit. The rapid poststress accumulation 
of 2-AG in the PAG suggests that endocannabinoid 
release, rather than intrinsic CB 1  activity, is responsible 
for SIA. 

 We compared the time courses of endocannabinoid mobili-
zation in the PAG with those of SIA. A strong temporal cor-
respondence was found between these parameters (r = 
0.943,  P  < .03), consistent with mediation by a common 
mechanism (     Figure 4 ). By contrast, anandamide was 
released with a strikingly dissimilar time course that does 
not closely correspond to that of 2-AG mobilization or SIA 
over the same interval (r =  – 0.479,  P =  .26). This temporal 
correlation points to 2-AG as a key mediator of nonopioid 
SIA.    

 Figure 3.    The dPAG plays a pivotal role in nonopioid stress-
induced analgesia. Rimonabant (2 nmol) microinjection into the 
dPAG induced a maximal suppression of stress antinociception 
(F 3,484 = 96.42,  P  < .0001) relative to the vPAG, the RVM, or 
control conditions. SIA was assessed as the postshock (0.9 mA 
for 3 minutes) tail-fl ick latency by an investigator blinded to the 
experimental condition. Vehicle groups did not differ from each 
other and were pooled for all sites. 52  ,  121  dPAG indicates 
dorsolateral PAG; RVM, rostral ventromedial medulla; SIA, 
stress-induced analgesia; and vPAG, ventrolateral PAG.  
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  ENDOGENOUS 2-AG MEDIATES SIA 
 If mobilization of 2-AG in the PAG mediates SIA, selective 
inhibitors of MGL should increase accumulation of 2-AG 
and enhance SIA. 52  Consistent with this prediction, micro-
injection of the novel MGL inhibitor URB602 into the dor-
solateral PAG or ventrolateral PAG enhanced SIA. 52  Basal 
nociceptive thresholds in nonshocked rats were unaffected. 
The effect of URB602 was likely due to the accumulation 
of 2-AG in the PAG because the URB602-mediated 
en hancement of SIA was prevented by coadministration of 
rimonabant and accompanied by an elevation in midbrain 
2-AG levels. 52  Microinjection of URB602 into the PAG 
increased accumulation of 2-AG in brains of rats exposed to 
the stressor relative to vehicle-treated controls without alter-
ing levels of anandamide. These fi ndings indicate that the 
MGL inhibitor URB602 enhances both 2-AG accumulation 
and SIA. These studies suggest that endogenous 2-AG plays 
a physiological role in pain modulation.  

  SITE-SPECIFIC ENHANCEMENT OF 
ENDOCANNABINOID DEACTIVATION ENHANCES 
STRESS ANTINOCICEPTION 
 Because the PAG serves key functions in both the descend-
ing control of pain 21  ,  120  and the antinociceptive actions of 
cannabinoid agonists, 115  we examined the impact on stress 
antinociception of pharmacologically manipulating endo-
cannabinoid deactivation using site-specifi c microinjections. 
Microinjection of either the FAAH inhibitor URB597 52  or 
arachidonoyl serotonin 121  to the dorsolateral PAG enhanced 
the magnitude and duration of endocannabinoid-mediated 
stress antinociception. These effects were blocked by coad-
ministration of rimonabant, at a dose that was in suffi cient to 
reverse stress antinociception. It has recently been reported 

that site-specifi c microinjections of URB597 into the ven-
trolateral PAG enhance nociceptive behavior assessed in the 
plantar and tail-fl ick tests in otherwise naive rats, 99  despite 
producing enhanced anandamide and 2-AG levels. Consis-
tent with our results, however, the highest dose of URB597 
tested produced CB 1 -mediated antinociception. 
 Cannabinoids microinjected into neural targets of the PAG 
in the RVM induce antinociception and suppress nocicep-
tive processing. 98  ,  116  ,  125  Like opioids, 142  cannabinoids mod-
ulate on- and off-cells in the RVM, 89  demonstrating the 
ability of these ligands to control descending pain signaling. 
Based upon the anatomy of the midbrain-to-brainstem pain 
modulation circuit and upon the robust effects of blocking 
CB 1  receptors in the dorsolateral PAG or RVM in attenuat-
ing SIA, 52  we further reasoned that inhibition of endocan-
nabinoid deactivation at the level of the RVM would enhance 
stress antinociception. 121  Pharmacological inhibition of 
FAAH via site-specifi c microinjections of arachidonoyl 
serotonin into the RVM enhanced stress antinociception via 
a CB 1 -specifi c mechanism. 121  
 In rats, spinal transection reduces the antinociceptive 111  and 
electrophysiological 86  effects of cannabinoids. However, an 
enduring residual antinociception remains in spinally tran-
sected mice, 143  suggesting that endocannabinoids exert an 
analgesic effect at the spinal level as well as supraspinally. 
The localization of CB 1  receptors in the spinal dorsal 
horn 7  ,  104  supports this view. Exogenously administered can-
nabinoids also produce antinociception when applied 
directly to the spinal cord 96  ,  143-146  and suppress noxious 
stimulus – evoked neuronal activity in spinal nociceptive 
neurons, 82  ,  85-87  suggesting that spinal cannabinoid receptors 
have a functional role in modulating nociceptive process-
ing. Intrathecal administration of either rimonabant or CB 1  
antisense oligonucleotides also elicits hyperalgesia, 147  

 Figure 4.      Stress antinociception shows a temporal correspondence with 2-AG accumulation in midbrain periaqueductal gray. A 
signifi cant correlation was observed between 2-AG ( r  = 0.943,  P  < .03) but not anandamide ( r  =  – 0.479,  P =  .26) accumulation and 
stress antinociception over the same time course. Stress antinociception was assessed as the postshock (0.9 mA for 3 minutes) tail-fl ick 
latency. ( — ) basal nociceptive threshold; ( — ) basal endocannabinoid level. 52  2-AG indicates 2-arachidonoylglycerol.  
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 suggesting that endocannabinoids may act tonically to sup-
press nociceptive responding. 
 To identify a physiological role for endocannabinoids at the 
spinal level, we bidirectionally manipulated endocannabi-
noid tone at CB 1  receptors in the lumbar spinal cord and 
assessed endocannabinoid mobilization in the lumbar spinal 
cord following exposure to a 3-minute continuous foot 
shock. 141  Stress antinociception was associated with the 
heightened release of endogenous 2-AG, whereas increases 
in anandamide mobilization were not detected, 141  perhaps 
because of greater variability and lower absolute levels of 
anandamide in these samples. Rimonabant failed to sup-
press endocannabinoid SIA when administered intrathecally 
to rats at a dose 10 times greater than that delivered to the 
PAG and RVM. 141  Nonetheless, pharmacological inhibitors 
of FAAH and MGL markedly enhanced the magnitude and 
duration of stress antinociception after intrathecal adminis-
tration via a CB 1 -specifi c mechanism. 141  Our results show 
that, at the level of the spinal cord, endocannabinoids regu-
late but do not mediate nonopioid SIA. 
 The activity of endocannabinoids in the descending neural 
pathway projecting from the PAG to the RVM to the spinal 
cord is implicated in the activation of endogenous pain sup-
pression mechanisms in response to stress. We also exam-
ined neuroanatomically  “ upstream ”  centers responsible for 
activating this mechanism following exposure to a stressor. 
Situated in the limbic forebrain, the amygdala is implicated 
in both fear conditioning 148  and the affective 133  ,  149  dimen-
sions of pain. CB 1  immunoreactivity is dense in the basolat-
eral nucleus of the amygdala (BLA) 2  ,  150  but is reportedly 
absent in the central nucleus of the amygdala (CeA). 150  The 
anatomical localization of CB 1  in the BLA is consistent with 
electrophysiological data demonstrating that activation of 
these receptors presynaptically modulates GABAergic 
transmission. 150  The distribution of FAAH and MGL at this 
site also correlates well with the distribution of CB 1  recep-
tors. 59  BLA efferents innervate the CeA, the main amygda-
loid output nucleus, which sends projections to the PAG and 
other regions. Unilateral microinjection of cannabinoid 
agonists into the amygdala also induces antinociception in 
the tail-fl ick test, 114  supporting the notion that this structure 
plays a role in modulation of pain sensitivity. 
 Microinjections of rimonabant into the BLA, but not the 
CeA, suppressed nonopioid stress antinociception in our 
paradigm. 151  Our data are consistent with the observation 
that CB 1  agonists depress monosynaptic evoked inhibitory 
postsynaptic potentials in the BLA but not in the CeA. 150  
Our results, therefore, suggest that CB 1  receptors in the 
BLA modulate local inhibitory networks in the BLA to ulti-
mately regulate expression of SIA. Nonetheless, neither the 
FAAH inhibitor URB597 nor the MGL inhibitor URB602 
enhanced SIA following v into the BLA 151  at doses that 
markedly potentiated SIA following microinjection into the 

midbrain dorsolateral PAG. 52  These differences may refl ect 
differential modulatory roles of distinct endocannabinoids 
in the ascending  “ affective ”  pain pathway compared with 
descending pain modulatory systems, or higher hydrolytic 
activity of endocannabinoid-degrading enzymes in the BLA 
relative to the PAG. 
 In sum, our results suggest that the coordinated release of 
2-AG and anandamide in the PAG, RVM, and lumbar spinal 
cord mediates nonopioid SIA. The 2 endocannabinoids may 
act on local CB 1  receptors 2  ,  7  ,  122  to regulate glutamatergic 
and GABAergic transmission, ultimately disinhibiting 
descending pain control pathways. Three points are worthy 
of emphasis. 52  First, endocannabinoid-dependent stress anti-
nociception is not affected by opioid antagonists or mor-
phine tolerance, which implies that it may not require opioid 
activity. However, mutant CB 1  null mice also display reduced 
opioid-mediated responses to stress, 152  so opioid SIA need 
not be independent of endocannabinoids. Second, the resid-
ual antinociception observed in the presence of CB 1  antago-
nists leaves open the possibility that additional mediators of 
nonopioid SIA remain to be discovered. Third, stress mobi-
lizes both 2-AG and anandamide in the dorsal midbrain, but 
these 2 endocannabinoids are released with distinctly dis-
similar time courses. This observation underscores the exis-
tence of functional differences between these signaling 
molecules 36  that may be relevant to understanding endocan-
nabinoid actions in other brain regions. The ability of both 
MGL and FAAH inhibitors to enhance endocannabinoid-
dependent stress antinociception also highlights the signifi -
cance of these enzymes as novel targets for the treatment of 
pain and stress- and anxiety-related disorders. 52  ,  68   

  CONCLUSIONS 
 Interest in the behavioral effects of cannabinoids has bur-
geoned since the cloning of cannabinoid CB 1  and CB 2  
receptors and the isolation of endocannabinoids. The ability 
of cannabinoids to induce antinociception in virtually every 
animal model of acute or persistent pain evaluated has 
encouraged researchers to try to better understand this 
important nonopioid system of analgesia. Neuroanatomical 
studies have revealed that cannabinoid CB 1  receptors, endo-
cannabinoids, and endocannabinoid-degrading enzymes are 
localized in central nervous system regions subserving the 
transmission and modulation of nociceptive signaling. 
Behavioral tests of acute nociception and tissue and nerve 
injury models of nociception have helped confi rm the 
hypothesis that cannabinoids mediate antinociception via 
activation of CB 1  and CB 2  receptors. Recent studies have 
clarifi ed the role of peripheral, spinal, and supraspinal sites 
in CB 1 -dependent analgesia. 
 Cannabinergic agents may offer promise in clinical pain man-
agement both on their own and as adjuncts to conventional 
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therapeutic agents. Cannabinoids may be particularly effi -
cacious for pain syndromes that are intractable to conven-
tional analgesics (eg, neuropathic pain) 153  ,  154  and in patient 
populations where the emetic effects of opioids are poorly 
tolerated (eg, cancer patients, AIDS patients). Furthermore, 
inhibitors of endocannabinoid-degrading enzymes such as 
FAAH and MGL may function to selectively enhance CB 1 -
mediated neurotransmission only in nervous system areas 
where endocannabinoids are synthesized and released on 
demand, thereby precluding the induction of side effects 
associated with global CB 1  activation. 155  Moreover, syner-
gism between cannabinoid and opioid analgesia has been 
demonstrated. 144  ,  156  Collectively, these fi ndings suggest that 
activation of cannabinoid receptors and inhibition of endo-
cannabinoid deactivation may be promising targets for the 
clinical management of pain.  
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